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Abstract—With the emergence of autonomous ground vehicles
and the recent advancements in Intelligent Transportation Sys-
tems, Autonomous Traffic Management has garnered more and
more attention. Autonomous Intersection Management (AIM),
also known as Cooperative Intersection Management (CIM)
is among the more challenging traffic problems that poses
important questions related to safety and optimization in terms
of delays, fuel consumption, emissions and reliability. Previously
we introduced two stop-sign based policies for autonomous
intersection management that were compatible with platoons of
autonomous vehicles. These policies outperformed regular stop-
sign policy both in terms of average delay per vehicle and
variance in delay. This paper introduces a reservation-based
policy that utilizes the cost functions from our previous work to
derive optimal schedules for platoons of vehicles. The proposed
policy guarantees safety by not allowing vehicles with conflicting
turning movement to be in the conflict zone at the same time.
Moreover, a greedy algorithm is designed to search through
all possible schedules to pick the best that minimizes a cost
function based on a trade-off between total delay and variance
in delay. A simulator software is designed to compare the results
of the proposed policy in terms of average delay per vehicle and
variance in delay with that of a 4-phase traffic light.

Index Terms—Intelligent Transportation Systems, Autonomous
Vehicles, Cooperative Intersection Management, Cooperative
Adaptive Cruise Control

I. INTRODUCTION

As bottlenecks of traffic flow, intersections are known to be
a major contributor to traffic accidents. According to National
Highway Traffic Safety Administration (NHTSA), [1] 40
percent of all crashes that occurred in the United States in
2008 were intersection-related. Moreover, Traffic efficiency
is reported to be closely correlated with traffic safety on
intersections [2]. Traffic congestion is also among the more
important contributors of CO2 emissions [3] which is the
largest constituent of transport’s greenhouse gas emissions.
Vehicle stop times at intersections also contribute to carbon
monoxide (CO) emissions. International energy agency re-
ports that when vehicles are idle at an intersection they emit
about 5–7 times as much CO as vehicles traveling between 5–
10 mph [4].

Traffic Lights and stop signs are the major methods for
traffic control used at intersections. While traffic lights have
helped improve traffic flow at intersections, they are still
considered inefficient and a contributor to traffic congestion
and accidents. Statistically a majority of intersection-related
accidents occur in the presence of traffic lights [1]. In the
past two decades, adaptive and smart traffic light controllers

have been introduced and deployed, with significant im-
provements in terms of delay and congestion. It has been
shown that the performance of traditional traffic lights can
be improved through machine learning based approaches such
as Fuzzy logic [5], neural networks [6] and Reinforcement
Learning [7], and mathematical models such as Mixed-Integer
Linear Programming (MILP) [8]. However, traffic lights have
remained a major contributor to congestion and traffic acci-
dents. Moreover, while signalized intersections work well with
human drivers, they don’t necessarily leverage the advantages
associated with autonomous vehicles.

Recent advancements of Information Technology and the
emergence of Vehicular Adhoc Networks (VANETs) that sup-
port Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I)
and Vehicle to Pedestrian (V2P) communications have brought
forth opportunities for further advancements of intersection
management infrastructure. This includes new non-signalized
approaches for the intersection management problem, com-
monly known as Cooperative Intersection Management (CIM),
where road users, i.e. vehicles communicate with the infras-
tructure and/or other users to cooperatively coordinate the
traffic flow. In 2014, the Institute of Electrical and Electronics
Engineers (IEEE) published the Wireless Access for Vehicle
Environments (WAVE) [9] specification. The standards define
architectures based on Dedicated Short Range Communica-
tions (DSRC) for which the Society of Automotive Engi-
neers (SAE) has specified message types and data elements
through various standards.

Due to the limited capacity of current V2X communications,
the communication complexity is one of the critical issues
for CIM [10]. In [11] we proposed that platooning in the
vicinity of intersections could reduce communication overhead
by allowing platoon leaders to negotiate with the infrastructure
and other platoons on behalf of the followers. Moreover, it
can help improve the efficiency of any scheduling policy
by enabling smooth trajectories in the conflict zone. The
simulation results showed that the proposed stop-sign based
controller outperformed a regular stop sign by 50% in terms
of average delay per vehicle and 40% in variance of delay.
The proposed policies decrease computational complexity by
only including one platoon per lane into the schedule.

This paper introduces a reservation-based policy that utilizes
cost functions that minimize delay, or a combination of delay
and variance, to derive optimal schedules for platoons of vehi-
cles. Such schedules would decrease average delay per vehicle
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while decreasing the variance in delay due to the fairness of the
cost functions and as a result increase intersection throughput
and decrease the average fuel consumption in the vicinity of
an intersection. The proposed policy guarantees safety by not
allowing vehicles with conflicting turning movement to be in
the conflict zone at the same time.

The rest of this paper is organized as follows. Section II
provides a background of previous works on the CIM problem.
Section III describes the vehicle dynamics model, fuel con-
sumption model and platooning approach used in this work.
Section IV introduces the proposed controller. In section V the
results of simulations of a single 4-way intersection scenario
are discussed and the proposed method’s results are compared
with that of a 4-phase traffic light controller. Conclusions are
presented in section VI.

II. COOPERATIVE INTERSECTION MANAGEMENT

Several methods have been proposed to leverage au-
tonomous and connected vehicles for the intersection man-
agement. The new methodologies for CIM can be categorized
into two classes of Centralized and Distributed methods [12].
In centralized methods, a central intersection manager unit
receives real-time information and requests from road users
and decides how to coordinate the traffic flow, e.g. instruct
vehicles how, when and if to pass the intersection. Distributed
methods, on the other hand, do not rely on a central control
unit. Instead, all vehicles collaboratively plan their trajecto-
ries. These methods usually involve negotiation protocols to
make decisions on a high level and each user/vehicle makes
decisions based on shared objectives given local information
from its sensors on a lower level.

A. Centralized Methods

In [13], Dresner et al. propose a centralized resource reser-
vation algorithm based on First Come First Serve (FCFS)
policy. The control unit receives requests from all vehicles
approaching the intersection, simulates the vehicle’s movement
through the intersection, given the information in the request,
and confirms the request if there is no conflict with previously
accepted trajectories, otherwise the request would be rejected
and the vehicle has to request at a later time. The authors
assume constant speed at the intersection and perform simu-
lations comparing results with a traffic light and an overpass.
It was shown that the proposed method outperformed traffic
light in terms of average vehicle delay. The authors further
developed their work in [14] to add several methods to improve
the performance and overcome major disadvantages of the
previous work. Moreover, they improved the work in [15]
and [16] by adding support for human drivers, considering
emergency vehicles that generally have higher priority, and
communication schemes for vehicles with different levels of
autonomy.

In [17], a case of two merging roads (one lane) is modeled
as a polling system with two queues and one server. The
polling system determines the sequence of times assigned to
the vehicles on each lane to enter the merging road. The

arrival times along with the trajectories of the leading vehicle
are then used in a coordination algorithm to generate optimal
trajectories for each vehicle in the queue.

Lee and Park [18] derive a nonlinear constrained opti-
mization problem to enhance the performance a traffic signal
controller in presence of fully autonomous vehicles. A phase
conflict map of the traffic signal is used as part of the
optimization problem.

B. Decentralized Methods

In [19] a controller model has been proposed along with
different V2V-based intersection management protocols to
enhance traffic throughput and safety. Each vehicle runs a
collision avoidance algorithm that takes in all safety messages
that are being broadcast by surrounding vehicles and detects
possible collision. Estimations are then used to generate alter-
native trajectories to avoid collisions.

Wu et al. [20] proposed a decentralized stop-and-go based
algorithm that relies on wireless shared information among
all approaching vehicles. The vehicle with a shorter estimated
arrival time will cross the intersection, while others will need
to come to a complete stop until the conflict zone is cleared.
Vehicles with non-conflicting turning movements can cross
simultaneously.

C. Motivation and Contributions

The existing approaches are limited with respect to at least
one of the following factors:
• unrealistic or infeasible bandwidth requirements for com-

munication
• no performance guarantees, i.e. no guarantee that the in-

tersection will behave better than signalized intersections
• no formal safety guarantee
• scalability with respect to number of cars and lanes
• unrealistic assumptions about vehicle behavior

Any solutions for the CIM problem has to be compatible with
real world communication capacity of vehicular networks,
otherwise such solutions will not be feasible. To address this
issue we propose a platoon-based approach where vehicles
request a pass as a platoon. The intersection manager utilizes
an optimization based policy to allocate slots in time and space
for any platoon approaching the intersection. Communicating
with platoon leaders, instead of every approaching vehicle, de-
creases the amount of communication needed. This approach
also takes advantage of recent advances in platooning and
connected vehicle control.

The performance of the solution has to be verified with
respect to various performance metrics such as average delay,
intersection throughput, average speed, fuel consumption, etc.
We conduct microscopic simulations to verify the performance
of the proposed method in comparison to a pre-timed 4-phase
traffic light controller. Table I shows the performance metrics
used in this work.

The solution has to be scalable to growing number of
roads/lanes and vehicles. We achieve a scalable solution by
only taking the information from the closest platoons to
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the intersection at each iteration. This guarantees that the
computational complexity of the algorithm remains relatively
unchanged as the size of the input grows.

Most of the previously published papers make simplis-
tic assumptions about vehicle dynamics, e.g. second order
dynamics where the control input generates instant acceler-
ations, disregarding disturbance forces, and oversimplifying
the driving force, which is a function of throttle and brake
positions among other factors. In this paper, we utilize a model
for vehicle dynamics to generate more realistic results when
compared to the relevant literature. These assumptions help
design control strategies that are more feasible for use in the
real world.

TABLE I: Performance Measure Index

Performance Measure Index

Performance Index Unit

Average Delay s

Delay Standard Deviation s

Intersection Throughput veh/hour

Fuel Consumption ml/veh

III. VEHICLE DYNAMICS AND PLATOONING

In our previous work, a simple linear model was assumed
for the vehicle dynamics. Such simplistic assumptions can be
found in many of the work in Section II. In what follows,
however, a nonlinear model has been adopted and modified.
The rest of this section provides the details of this model,
which is divided into two parts: equation of motion and
rotational velocity.

A. Vehicle Dynamics

We modify the original nonlinear dynamics found in [21] in
order to represent the braking and turning required to traverse
an intersection.

1) Equations of Motion: A general form of the equation
of motion is Equation 1 which is a force balance for the car
body.

m
dv

dt
= F − Fd (1)

In the above equation, m is the total mass of the car, v is
the car’s speed, F is the traction force generated from the
contact of wheels with the road and Fd is the sum of all
disturbance forces due to gravity, friction and aerodynamic
drag (Equation 2).

Fd = Fg + Fr + Fa (2)
Equation 3 models the driving force generated by the engine.
The engine torque T is a function of the throttle position
controlled by control input 0 ≤ u ≤ 1, and the engine speed ω
(Equation 4). αn is the inverse of the effective wheel radius.

F = αnuT (αnv) (3)

ω =
n

r
v = αnv (4)

In the above equation, n is the gear ratio, r is the wheel radius
and v is the speed of the car. In this work, the torque is mod-
eled by the simple representation in Equation 5, where β is a
design parameter of the engine and Tm is the maximum torque
obtained from the maximum engine speed ωm. Typical values
for these parameters are, Tm = 190Nm, ωm = 420rad/s
and β = 0.4.

T (ω) = Tm(1− β( ω
ωm
− 1)

2
) (5)

Equations 6, 7 and 8 represent the disturbance forces due to
gravity, friction and aerodynamic drag respectively.

Fg = mgsin(θ) (6)
Fr = mgCrsgn(v) (7)

Fa =
1

2
ρCdAv

2 (8)
Equation 9 represents the complete form of the equation of

motion, where αn is the reverse of effective wheel radius,
given the nth gear position. ρ is the density of air, Cr is
the coefficient of rolling friction, Cd is the aerodynamic drag
coefficient and A is the frontal area of the car. In this work
we use typical values for these parameters as follows: α1 =
40, α2 = 25, α3 = 16, α4 = 12, α5 = 10, Cr = 0.01, ρ =
1.3 kg

m3 , Cd = 0.32 and A = 2.4m2. The slope of the road θ is
assumed to be zero in this work, thus eliminating the influence
of the gravity as a disturbance force in the experiments.

m
dv

dt
= αnuT (αnv)−mgCrsgn(v)

− 1

2
ρCdAv

2 −mgsinθ
(9)

We modify the model in 9 to add a braking component
to the system. The braking is modeled as an extra friction
component to the equation of motion. The control input u is
replaced with two new control inputs 0 ≤ h ≤ 1 and 0 ≤ b ≤
1, representing throttle and braking commands respectively,
where both are functions of the computed control input −1 ≤
u′ ≤ 1 (Equations 10, 11).

h(u′) =

{
u′ if u′ > 0

0 if u′ ≤ 0
(10)

b(u′) =

{
| u′ | if u′ < 0

0 if u′ ≥ 0
(11)

Equation 12 shows the modified equation of motion.

m
dv

dt
= αnhT (αnv)−mg(Cr + b)sgn(v)

− 1

2
ρCdAv

2 −mgsinθ
(12)

2) Rotational Velocity: Given the model above, the rota-
tional velocity of the vehicle can be calculated by Equation 13.

dθ

dt
=
v0
L
tanδ (13)

where θ is the vehicle’s orientation, v0 is the speed of the rear
wheel(s), L is the wheel base and δ is the steering angle.

B. Fuel Consumption Model

For approximating the fuel consumption of the vehicles,
here we adopt a differentiable function of velocity and ac-
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celeration introduced in [22], where two polynomial estima-
tion functions of velocity and acceleration are approximated
through curve-fitting process, given real-world data obtained
from a typical vehicle with similar properties compared to the
assumptions of this work. The fuel consumption in ml/s is
estimated as:

fV = (fcruise + faccel) (14)

Where, fcruise represents fuel consumption rate at a steady
velocity of v, and faccel is the additional consumption due to
presence of acceleration a at velocity v.

fcruise = b0 + b1v + b2v
2 + b3v

3 (15)

faccel = a(c0 + c1v + c2v
2) (16)

The consumption parameters are b0 = 0.1569, b1 = 2.450 ×
10−2, b2 = 7.415 × 10−4, b3 = 5.975 × 10−5, c0 =
0.07224, c1 = 9.681× 10−2, and c2 = 1.075× 10−3. Details
of the formation and determination of parameters of this fuel
consumption model are described in [23].

C. Cooperative Adaptive Cruise Control (CACC)

The CACC (a.k.a platooning) problem [24] has been widely
studied in the literature and several solutions have been
proposed [25], [26], [27]. We adopt the Predecessor-Leader-
Follower (PLF) information flow topology to describe the
communication between the vehicles in a platoon.

A proportional-integral-derivative (PID) controller is de-
signed and tuned given the vehicle dynamics to achieve string
stability. An interested reader can view a video1 of a step
response of the controller in a simple scenario where a platoon
of five vehicles starts from a standstill and is supposed to
reach the velocity of 30mi

h , come to a complete stop at the
intersection and accelerate to 25mi

h .

IV. PLATOON-BASED AUTONOMOUS INTERSECTION
MANAGEMENT

In this work, we extend the policies from our previous
work, create an application layer communication protocol and
eliminate some of the simplistic assumptions about vehicle
dynamics to achieve the following goals:

1) Achieve a solution under realistic assumptions
2) Improve efficiency in terms of delay and fuel consump-

tion
3) Design a communication protocol that hides the algo-

rithm from the vehicle agents

A. Communication Protocol

A protocol is designed to ease the Vehicle to Vehicle
(V2V) and Vehicle to Infrastructure (V2I) communications.
Using this protocol, the intersection manager only has to
communicate with the leader of a platoon. Each vehicle is
broadcasting its state on a 10Hz frequency, while receiving
incoming packets on the same frequency. There are four types
of packets designed for the platoon leaders and two types for
the infrastructure as follows.

1https://youtu.be/uuxMVm0MWDQ

Vehicle Message Types:
• Request
• Change-Request
• Acknowledge
• Done

Infrastructure Message Types:
• Acknowledge
• Confirm
• Reject

Approaching platoon leaders send a Request message once
they are in a pre-defined proximity of the intersection,
and await the response from the manager. Both Request
and Change-Request messages consist of the unique Vehicle
Identification Number (VIN) of the leader, current position,
velocity and acceleration of the leader, estimated arrival time
at the conflict zone and the size of the platoon, e.g. number
of followers.

Upon receiving a request, the manager sends an Acknowl-
edge message to the sender, runs the scheduler and responds
with either an Confirm or a Reject message. The manager
expects to receive an Acknowledge from the corresponding
vehicle and if such message is not received, it re-sends the
message until the acknowledgement is received. The vehicles
can send a Change-Request message to the manager if they
need to update information in their previous request. Once a
vehicle has finished crossing the conflict zone, it is required to
send a Done message to the manager, which lets the manager
know it can remove the corresponding vehicle’s platoon from
the schedule.

This protocol is designed to hide the scheduling policy from
the vehicle agents, therefore allowing for online changes to the
policy without requiring any changes in communications.

B. Policy

The scheduling problem is formulated as the following
minimization problem.
argmin

s
δ(s) = {s | s ∈ S ∧ ∀s′ ∈ S : δ(s) ≤ δ(s′)} (17)

Where s is a schedule of vehicles (platoons), δ is a cost
function designed to penalize total delay and variance in delay,
given a schedule, as in Equations 18 and 19.

δ1(s) =

N∑
j=2

j

(
d(pj) +

j−1∑
i=1

tc(pi)

)
(18)

δ2(s) =

N∑
j=2

(
d(pj) +

j−1∑
i=1

tc(pi)

)
(19)

In the above equations, N is the number of platoons in the
schedule, j is the platoon’s turn, d is a function that returns
the sum of the current delay of the vehicles within a given
platoon, and again s is the given schedule. This delay, d, is
the difference between the vehicle’s original expected arrival
time and its expected arrival time assuming it will be the
next platoon going through. tc is a function that computes the
additional delay caused by the platoons that are given higher
priorities than the jth platoon in the schedule.
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The scheduler in Equation 17 essentially simulates all
possible schedules given the set of platoons in the queue,
and returns a schedule that has the lowest score in terms of
the cost function δ1(s) or δ2(s). For the rest of this paper
we will refer to δ1(s) and δ2(s) as Platoon-based Variance
Minimization (PVM) and Platoon-based Delay Minimization
(PDM), respectively.

The scheduling procedure will be called by the controller
every time a change is detected in the set of platoons in
the schedule. For example, the procedure is called when a
platoon finishes crossing the conflict zone and as a result is
removed from the schedule, or when a new platoon enters
the communication zone. The controller keeps a record of
the most recent schedule and sends a message to the platoon
that is at the top of the queue. The controller also checks
for non-conflicting turning movements in the schedule with
that of the platoon at the top of the queue, and lets them
cross the intersection simultaneously. The clearance time of
the intersection is then updated by the maximum estimated
clearance time of the platoons that are crossing the conflict
zone.

Algorithm 1 shows the intersection management algorithm
in pseudo code.

Algorithm 1 Autonomous Intersection Manager

1: function INTERSECTIONMANAGER
2: while True do
3: P = getRequests() a

4: sort(P )b

5: pool = selectCandidates(P )
6: if !pool.isUpdated() then
7: continue c

8: end if
9: [platoons, schedule] = getSchedule(pool)

10: i = 1
11: for platoon in platoons do
12: update(platoon, schedulei)
13: i++
14: end for
15: end while
16: end function

aWhere P is a map of platoons paired with their respective request information
bSort the platoon list based on their expected arrival time to make the
candidate selection run faster

cSkip this iteration if the selection pool has not changed

The algorithm considers at most one platoon for each lane
that is in the communication range of the central controller,
i.e. the leading platoon in each lane. Such design makes the
policy scalable, in that the computational complexity of the
scheduler remains suitably low as the number of incoming
lanes grow.

C. Computational Complexity

The algorithm considers all permutations of the set of
platoons, including possible non-conflicting trajectories in

which case simultaneous crossing is considered. These per-
mutations can be modeled as a permutation problem to pick
from K elements without replacement and placing them in sets
of {K,K − 1, ..., 1} placeholders. Therefore, the worst case
computational complexity of such algorithm would be equal
to the number of possible permutations, given in Equation 20.

T =

N∑
r=1

r−1∑
i=0

(−1)i
(
r

i

)
(r − i)N (20)

In the above equation, T is the total number of possible
schedules, N is the number of lanes, r and i are index
counters. One may note that the exponential nature of this
complexity can only be acceptable for small number of in-
coming lanes. It can be shown that the algorithm will have
the worst case computational complexity of O(NN ). For
example, the 4-way intersection considered in this work would
only require 75 possible schedules to be considered in the
worst case. Due to space constraints, the details and proof of
computational complexity are omitted.

We propose a heuristic for larger intersections to reduce
computational complexity. The proposed heuristic does not
consider non-conflicting trajectories and therefore reduces the
complexity to the number of possible permutations which is
exactly N !, i.e. computational complexity of O(N !). After a
schedule is selected, the controller allows those platoons with
non-conflicting trajectories with regard to the selected platoon
to cross the intersection simultaneously. Fig. 1 demonstrates
how the proposed heuristic ignores the platoons behind the
closest platoon to reduce the computational complexity. The
platoons/cars in red represent the ignored input to the algo-
rithm. This figure also serves as a visual aid to represent the
geometry and turning policy of the intersection that was used
for the simulations.

Fig. 1: 4-way Intersection Geometry

V. SIMULATIONS

A fixed-time 4-phase traffic light controller is tuned for the
4-way intersection shown in Fig. 1. The phase plan and timing
diagram of the baseline traffic light policy are shown in Figs 2
and 3 respectively.

To compare the performance of the two proposed methods
against the baseline policy, we design 20 scenarios by choosing
different parameter settings in terms of incoming traffic flow
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and maximum platoon size. Each policy is evaluated for every
variation of the two parameters in table II. The incoming traffic
flow is equal on all approaches with 70% of the traffic going
straight, 20% turning right and 10% turning left. To minimize
the influence of randomness, each simulation is run for 60
minutes. Recorded videos of simulation for PVM2 and PDM3

TABLE II: Simulation Parameters

Parameter Name Set of Values unit

Traffic Level {500,600,700,800} veh/hour/lane

Simulation Time {3600} s

Maximum Platoon Size {1,2,3,4,5} veh

are available. Figs 4, 5, 6 and 7 demonstrate the results in terms
of delay per vehicle, delay standard deviation, intersection
capacity and fuel consumption, respectively. To conserve space
and promote readability, the results are aggregated over the set
of values for the traffic level parameter.

According to Fig. 4, the proposed methods significantly
outperform the traffic light controller in terms of average delay
per vehicle. Fig. 5 shows the computed standard deviation
of delays throughout the entire simulations for each policy
and the set of maximum platoon sizes. It can be seen that
the PVM method significantly decreases the standard deviation
compared to the traffic light, while as expected, PDM does not
show a meaningful improvement in terms of delay variance as
its cost function is designed to solely decrease total delay. One
may also note that the maximum platoon size and the PVM and
the traffic light performance are negatively correlated, which
confirms the positive effect of platooning on the performance
of any type of traffic controller.

Fig. 6 shows that platoon size and intersection capacity
are positively correlated for all policies. For the traffic light
policy, larger platoons result in more smooth trajectories with
shorter headways, and as a result increases the outgoing
traffic flow. Larger platoons also help the proposed policies
select better schedules in terms of total delay and variance,
which ultimately will increase the outgoing traffic flow. In
the simulations, PVM policy outperformed traffic light for all
incoming traffic flows and platoon sizes.

Fig. 7 demonstrates fuel consumption per vehicle as a
function of platoon size. As expected, platoon size and fuel
consumption are strongly correlated. PVM and PDM policies
outperform traffic light by 8% and 13% on average, respec-
tively. This result can be explained by the shorter idle times

2https://youtu.be/RtN0f7BlFyg
3https://youtu.be/qHGv9LF72NA
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Fig. 2: Phase Plan
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Fig. 3: Timing Diagram

generated by PVM and PDM compared to the traffic light pol-
icy. According to the fuel consumption model adopted in the
simulations, the vehicles consume fuel at a rate of 0.15 ml/s
when idle.

To compare the overall performance of the policies, results
from all configurations are aggregated into table III. All the
metrics in this table are averaged over the set of incoming
traffic flows that range from 500 to 800 v/h/l. Traffic flows
are identical for each approach.

The PVM method outperforms the traffic light policy on
all four metrics. More notably, it decreased average delay
per vehicle by factor of 6.56× and decreases the standard
deviation to 4.9×, resulting in faster and more reliable traffic
flows. The PVM policy also increased the intersection capacity
by 13.8% compared to traffic light.

The PVM and PDM policies both outperform the traffic light
in terms of fuel consumption by 8% and 13% respectively.

VI. CONCLUSIONS

In this paper, a centralized platoon-based controller was
proposed for the cooperative intersection management problem
that takes advantage of the platooning systems to generate
fast and smooth traffic flow at an intersection. A simple
communication protocol was designed for V2I communication
and two policies were introduced for the controller to minimize
total delay and delay variance according to the cost functions
tailored for platoons of vehicles.

According to the simulation results, the proposed con-
troller minimizes travel delay and variance while increasing
intersection throughput and reducing fuel consumption, when
compared to traffic light policies. The simulations also verify
the positive effect of platoon size on fuel consumption and
intersection throughput.
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